If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-68x+19=0
a = 35; b = -68; c = +19;
Δ = b2-4ac
Δ = -682-4·35·19
Δ = 1964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1964}=\sqrt{4*491}=\sqrt{4}*\sqrt{491}=2\sqrt{491}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-68)-2\sqrt{491}}{2*35}=\frac{68-2\sqrt{491}}{70} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-68)+2\sqrt{491}}{2*35}=\frac{68+2\sqrt{491}}{70} $
| 6x+6=300 | | X+3x-4=50 | | 5x+63=5x+63 | | X+3x-4=5 | | 61x=160 | | 3(8+x)=7-2x | | 4x−3=18 | | 2x+40+x+10+3x-30=180 | | 4x-39=1x | | 9x+13+4x+24=180 | | 8w=6w=12 | | 10x+20(x+5)+30x/4=350 | | 11/4+5x=9/4-6x | | 2x-56=x-2 | | n÷4=10 | | 1/3(2n=1/4)=7/12 | | 1/2(4x+10=13 | | 2x-4=7x+8 | | 11w=3 | | 1.6y=9= | | 4.905t^2-5t=0 | | 7^(2x)Z=14 | | 3x-60=1x | | 3(4x-5)=7x+10 | | 13x-33=7x-15 | | 3(4x-5)=7x | | (5x+5)=3x+25 | | -2v-4v=17 | | 10(x+)=6x | | 2x×6x+2x=90 | | -2.3(x—1.2)=-9.66 | | 2x+36=18x-28 |